Evolving Personalized Content for Super Mario Bros Using Grammatical Evolution

نویسندگان

  • Noor Shaker
  • Georgios N. Yannakakis
  • Julian Togelius
  • Miguel Nicolau
  • Michael O'Neill
چکیده

Adapting game content to a particular player’s needs and expertise constitutes an important aspect in game design. Most research in this direction has focused on adapting game difficulty to keep the player engaged in the game. Dynamic difficulty adjustment, however, focuses on one aspect of the gameplay experience by adjusting the content to increase or decrease perceived challenge. In this paper, we introduce a method for automatic level generation for the platform game Super Mario Bros using grammatical evolution. The grammatical evolution-based level generator is used to generate player-adapted content by employing an adaptation mechanism as a fitness function in grammatical evolution to optimize the player experience of three emotional states: engagement, frustration and challenge. The fitness functions used are models of player experience constructed in our previous work from crowd-sourced gameplay data collected from over 1500 game sessions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterns and Procedural Content Generation

Procedural content generation and design patterns could potentially be combined in several different ways in game design. This paper discusses how to combine the two, using automatic platform game level design as an example. The paper also present work towards a pattern-based level generator for Super Mario Bros, namely an analysis of the levels of the original Super Mario Bros game into 23 dif...

متن کامل

A comparative evaluation of procedural level generators in the Mario AI framework

Evaluation is an open problem in procedural content generation research. The field is now in a state where there is a glut of content generators, each serving different purposes and using a variety of techniques. It is difficult to understand, quantitatively or qualitatively, what makes one generator different from another in terms of its output. To remedy this, we have conducted a large-scale ...

متن کامل

Super Mario Bros. is Harder/Easier Than We Thought

Mario is back! In this sequel, we prove that solving a generalized level of Super Mario Bros. is PSPACE-complete, strengthening the previous NP-hardness result (FUN 2014). Both our PSPACE-hardness and the previous NP-hardness use levels of arbitrary dimensions and require either arbitrarily large screens or a game engine that remembers the state of off-screen sprites. We also analyze the comple...

متن کامل

Learning Constructive Primitives for Online Level Generation and Real-time Content Adaptation in Super Mario Bros

Procedural content generation (PCG) is of great interest to game design and development as it generates game content automatically. Motivated by the recent learning-based PCG framework and other existing PCG works, we propose an alternative approach to online content generation and adaptation in Super Mario Bros (SMB). Unlike most of existing works in SMB, our approach exploits the synergy betw...

متن کامل

Graph Grammars for Super Mario Bros Levels

In side-scrolling games such as Super Mario Bros, the player interacts with a simplified, two-dimensional world made up of elements from a finite set. Conventionally, specialized designers build the levels of the game, applying their creativity and experience to produce content exhibiting structural correctness (the player must be able to traverse the level from start to end), interestingness a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012